Olive Oil

03

Impact on Health

Rachel Hill

Introduction to Olive Oil

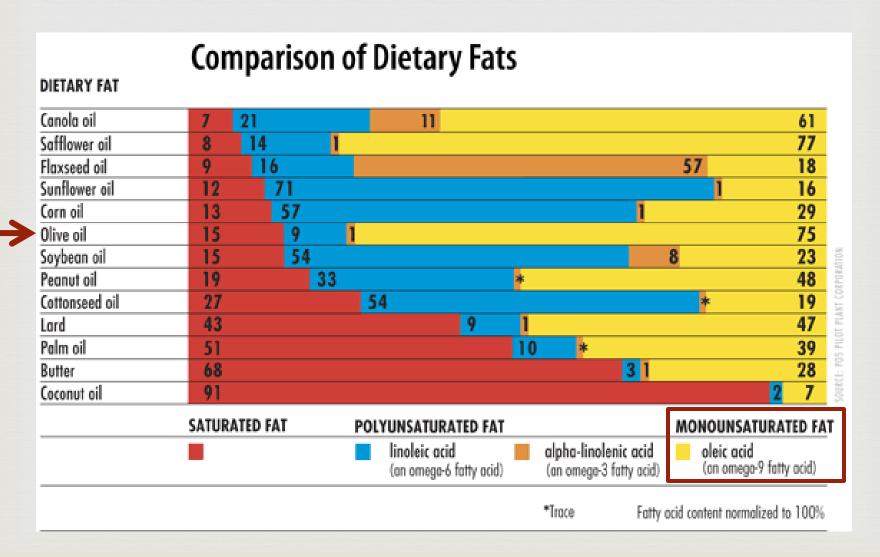
- **Realth Benefits**
- **Clinical** Trials
- **⊗** Summary
- My Experience
- **Questions**

Types of Olive Oil

03

○ Virgin Olive Oil (VOO)

© Olive Oil



Dietary Components

- Monounsaturated fatty acids (MUFA)
 - **Oleic** acid (18:1 n-9)

- Rhenolic constituents
 - **4** Hydroxytyrosol
 - **S** Tyrosol
 - **3** Oleuropein

Olive Oil vs. Other Oils

Olive Oil in the Mediterranean Diet

- Olive Oil is the
 - CS Primary source of fat
 - Major source of energy
- Mediterranean diet associated with
 - **S** Longevity
 - Increased quality of life
 - OB Decreased risk of certain chronic diseases

What is the difference?

Health Benefits

- **⋈** ↓ Blood pressure

- Antimicrobial effects in respiratory and GI tract
- □ Inflammation in rheumatoid arthritis

Health Benefits

- **⊗** ↓ Blood pressure
- □ Total cholesterol,
 □ LDL cholesterol,
 □ HDL cholesterol

- Antimicrobial effects in respiratory and GI tract

Study #1

Extra Virgin Olive Oil and Blood Pressure

Blood Pressure and Extra Virgin Olive Oil

- **Methods**
 - 23 hypertensive patients
 - Randomly assigned: 6 months on each diet

 - □ PUFA-rich diet: Sunflower oil
- Results: Amount of hypertensive medication needed dropped significantly during MUFA diet

Blood Pressure and Extra Virgin Olive Oil

Table 2	Variables at t	he End of MIIFA	and PUFA Diets*
lavie 2.	. variavies at t	IIE CIIU VI MIVEM	allu FUFA DIELS

	Baseline	MUFA Diet	PUFA Diet
Body weight, kg	70.1 (9)	70.0 (9)	70.1 (8)
Body mass index, kg/m ²	26.2 (2)	26.0 (2)	26.0 (2)
Systolic BP, mm Hg	134 (17)	127 (14)†	135 (13)
Diastolic BP, mm Hg	90 (7)	84 (8)±	90 (8)
Heart rate, beats/min	70 (9)	70 (5)	71 (6)
Cholesterol, mmol/L (mg/dL)	4.84 (1.16) (187.3 [44.9])	4.51 (1.09) (174.5 [42.2])	4.61 (1.03) (178.3 [39.8])
Triglycerides, mmol/L (mg/dL)	1.21 (0.68) (107.2 [60.2])	1.00 (0.41) (88.6 [36.3])	1.15 (0.65) (101.9 [57.6])
HDL cholesterol, mmol/L (mg/dL)	1.28 (0.26) (49.5 [10.0])	1.28 (0.31) (49.5 [12.0])	1.30 (0.26) (50.3 [10.0])
Serum glucose, mmol/L (mg/dL)	5.15 (1.00) (92.8 [18.0])	5.34 (0.22) (96.2 [4.0])	5.30 (0.28) (95.5 [5.0])

Table 4. Daily Drug Consumption*

	Baseline	MUFA Diet	PUFA Diet
Atenolol	450	275	500
Nifedipine	420	220	380
Lisinopril	120	70	110
Doxazosin mesylate	8	4	8
Hydrochlorothiazide	75	31.5	75

Study #2

Virgin Olive Oil and Cardiovascular Health

Cardiovascular Health and Virgin Olive Oil

- Title: Effect of Mediterranean diet on the expression of pro-atherogenic genes in a population at high cardiovascular risk
- **Methods**
 - 49 participants at high cardiovascular risk
 - Randomly assigned: 3 months

 - R TMD + nuts
 - **Control** diet
- Results: TMD + VOO prevented increase in LRP1 and COX-2 and reduced MCP-1 expression

Table 3
Changes in inflammatory, lipoprotein receptor and thrombotic gene expression^a.

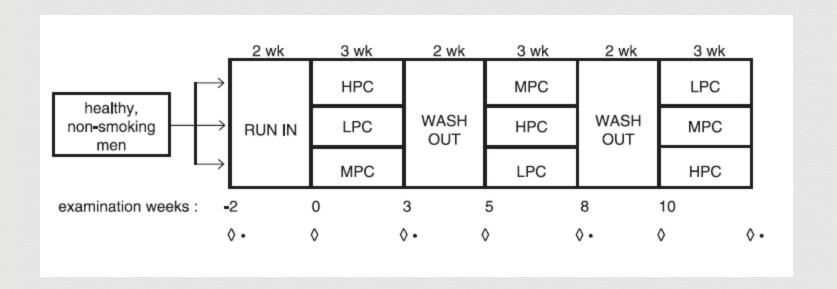
Variable	TMD+VOO	TMD+nuts	Control
COX-1 Baseline Final	1.16 ± 1.03 ^e 0.80 ± 0.68	1.02 ± 0.94 1.04 ± 6.87	0.73 ± 0.48 0.82 ± 0.49
COX-2 Baseline Final	1.09 ± 0.81 1.75 ± 1.29	1.18 ± 0.87 2.67 ± 1.67^{f}	0.88 ± 0.93 2.20 ± 1.97 ^g
MCP-1 Baseline Final	1.07 ± 1.11 0.67 ± 0.75^{f}	0.52 ± 0.56 0.71 ± 0.36	0.33 ± 0.40 0.54 ± 0.42
LDLR Baseline Final	0.68 ± 0.46 0.92 ± 0.54	$\begin{array}{c} 0.68 \pm 0.51 \\ 0.97 \pm 0.44^{\rm f} \end{array}$	0.54 ± 0.47 0.90 ± 0.59^{f}
LRP1 Baseline Final	0.96 ± 0.60 1.06 ± 0.65	0.75 ± 0.51 1.09 ± 0.51^{f}	0.52 ± 0.61 0.90 ± 0.70^{f}
CD36 Baseline Final	0.93 ± 0.57 0.95 ± 0.49	0.70 ± 0.53 1.08 ± 0.51^{f}	0.61 ± 0.48 0.69 ± 0.42
TF Baseline Final	0.68 ± 0.43 0.86 ± 0.68	0.63 ± 0.55 0.88 ± 0.72	0.52 ± 0.65 0.69 ± 0.58
TFPI Baseline Final	0.99 ± 0.60 0.80 ± 0.63	0.61 ± 0.47 0.85 ± 0.50^{j}	0.72 ± 0.56 0.74 ± 0.42

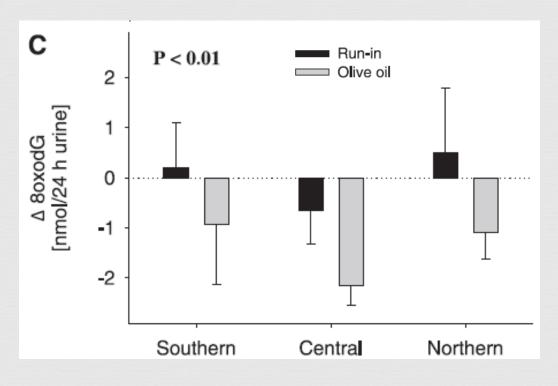
Table 2Changes in weight, adiposity, blood pressure, and other cardiovascular-risk factors^a.

TMD+VOO	TMD+nuts	Control	P time ^b	P group ^c	P interaction ^d
73.6 ± 11.6 ^e 74.0 ± 11.1	76.9 ± 6.6 76.0 ± 6.3	74.9 ± 13.1 74.6 ± 13.5	0.488	0.761	0.373
28.8 ± 2.7 28.8 ± 2.5	27.7 ± 2.5 27.4 ± 2.3	29.9 ± 5.5 29.9 ± 5.4	0.567	0.175	0.539
102 ± 10 101 ± 8	101 ± 5 98 ± 6^{f}	105 ± 16 100 ± 10	0.007	0.706	0.533
153 ± 10 147 ± 11 ^f	$149 \pm 18 \\ 142 \pm 15^{i}$	161 ± 17 161 ± 11	0.043	0.006	0.145g,h
82 ± 9 80 ± 9	$\begin{array}{c} 83\pm 8 \\ 80\pm 8^{\mathrm{f}} \end{array}$	87 ± 12 86 ± 11	0.021	0.153	0.743
156 ± 59 132 ± 40^{i}	144 ± 47 128 ± 36^{f}	156 ± 59 165 ± 79	0.018	0.418	0.011 ^g
231 ± 31 208 ± 40^{i}	218 ± 23 205 ± 18	205 ± 28 209 ± 43	0.014	0.472	0.050 ^g
148 ± 28 129 ± 41 ⁱ	143 ± 29 135 ± 19	125 ± 29 121 ± 31	0.003	0.202	0.207
52.3 ± 12.9 56.2 ± 14.1 ^f	48.1 ± 11.1 48.6 ± 10.0	48.5 ± 9.9 48.4 ± 10.5	0.154	0.252	0.201
147 ± 67 126 ± 50	127 ± 78 106 ± 38	145 ± 68 152 ± 84	0.215	0.275	0.405
4.6 ± 1.0 3.9 ± 1.1^{i}	$4.7\pm1.2 \\ 4.3\pm0.8^{\rm f}$	$4.1 \pm 0.68 \\ 4.1 \pm 0.73$	0.004	0.682	0.041 ^g
	73.6 ± 11.6^{e} 74.0 ± 11.1 28.8 ± 2.7 28.8 ± 2.5 102 ± 10 101 ± 8 153 ± 10 147 ± 11^{f} 82 ± 9 80 ± 9 156 ± 59 132 ± 40^{i} 231 ± 31 208 ± 40^{i} 148 ± 28 129 ± 41^{i} 52.3 ± 12.9 56.2 ± 14.1^{f} 147 ± 67 126 ± 50 4.6 ± 1.0	$73.6 \pm 11.6^{e} \\ 74.0 \pm 11.1$ $76.9 \pm 6.6 \\ 76.0 \pm 6.3$ $28.8 \pm 2.7 \\ 28.8 \pm 2.5$ 27.4 ± 2.3 $102 \pm 10 \\ 101 \pm 8$ 101 ± 8 $153 \pm 10 \\ 147 \pm 11^{f}$ $149 \pm 18 \\ 142 \pm 15^{i}$ $82 \pm 9 \\ 80 \pm 9$ $83 \pm 8 \\ 80 \pm 9$ $156 \pm 59 \\ 132 \pm 40^{i}$ $231 \pm 31 \\ 208 \pm 40^{i}$ $148 \pm 28 \\ 129 \pm 41^{i}$ $143 \pm 29 \\ 135 \pm 19$ $52.3 \pm 12.9 \\ 56.2 \pm 14.1^{f}$ 48.6 ± 10.0 $147 \pm 67 \\ 126 \pm 50$ 106 ± 38 4.6 ± 1.0 4.7 ± 1.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Study #3

Extra Virgin Olive Oil and Oxidative DNA Stress


Oxidative DNA Stress and Extra Virgin Olive Oil


Title: Effect of olive oils on biomarkers of oxidative DNA stress in Northern and Southern Europeans

Methods

- ✓ 182 healthy males
- **S** Randomly assigned
 - Olive oil with low, medium, or high phenolic content

Oxidative DNA Stress and Extra Virgin Olive Oil

Results

DNA oxidation decreased by 13% Not due to phenolic compounds

Summary

- - S Extra virgin olive oil
 - ♥ Virgin olive oil
 - **3** Olive oil
- Major Active Compounds
 - **MUFAs**
 - Phenolic compounds
 - Squalene

- **Realth Benefits**
 - Coronary Heart Disease
 - **Blood** pressure
 - Lipid profile
 - Glucose metabolism
 - Cancers (colon, breast, skin)
 - Antimicrobial activity
 - Anti-inflammatory response

Olive Oil Drizzle

03

Ingredients

- 3 4 Tbsp. extra virgin olive oil
- 3 toes fresh garlic, minced
- 2 Tbsp. seasoned rice vinegar
- □ 1 tsp. Kosher salt
- 2 Tbsp. parmesan cheese

Preparation

- Combine ingredients in small food processor and blend.
- Orizzle over a bed of fresh spinach, sliced mushrooms, red onion rings, sweet, mandarin oranges, and walnut halves.

- 1. Owen RW, Giacosa A, Hull WE, Haubner R, Wurtele G, Spiegelhalder B, Bartsch H. Olive oil consumption and health: the possible role of antioxidants. *Lancet Oncol*. 2000;1:107-112.
- 2. Waterman E, Lockwood B. Active components and clinical applications of olive oil. *Altern Med Rev*. 2007;12(4):331-342.
- 3. Perez-Jimenez F, Ruano J, Perez-Martinez P, Lopez-Segura F, Lopez-Miranda J. The influence of olive oil on human health: not a question of fat alone. *Mol Nutr Food Res*. 2007;51:1199-1208.
- 4. Harwood JL, Yaqoob P. Nutritional and health aspects of olive oil. *Eur J Lipid Sci Technol* 2002;104:685-697.

- 5. Salami M, Galli C, De Angelis L, Visioli F. Formation of F2-isoprostanes in oxidized low density lipoprotein: inhibitory effect of hydroxytyrosol. *Pharmacol Res*. 1995;31:275-279.
- 6. Newmark HL. Squalene, olive oil, and cancer risk: a review and hypothesis. *Cancer Epidemiol Biomarkers Prev.* 1997;6:1101-1103.
- 7. Stark AH, Madar Z. Olive oil as a functional food: epidemiology and nutritional approaches. *Nutr Rev.* 2002;60(6):170-176.
- 8. Perez-Jiminez F, Cienfuegos AG, Badimon L, Barja G, et al. International conference on the healthy effect of virgin olive oil. *Eur J Clin Invest*. 2005;35(7):421-424.

- 9. Owen RW, Haubner R, Wurtele G, Hull E, Spiegelhalder B, Bartsch H. Olives and olive oil in cancer prevention. *Eur J Cancer Prev.* 2004;13(4):319-326.
- 10. Ferrara LA, Raimondi AS, d'Episcopo L, Guida L, Russo AD, Marotta T. Olive oil and reduced need for antihypertensive medications. *Arch Intern Med*. 2000;160(6):837-842.
- 11. Llorente-Cortes V, Estruch R, Mena MP, Ros E, Gonzalez MA, Fito M, Lamuela-Raventos RM, Badimon L. Effect of Mediterranean diet on the expression of pro-atherogenic genes in a population at high cardiovascular risk. *Atherosclerosis*. 2010;208(2):442-450.

- 12. Machowetz A, Poulsen HE, Gruendel S, Weimann A, Fito M, Marrugat J, de la Torre R, Salonen JT, Nyyssonen K, Mursu J, Nascetti S, Gaddi A, Kieswetter H, Baumler H, Selmi H, Kaikkonen J, Zunft HJ, Covas MI, Koebnick C. Effect of olive oils on biomarkers of oxidative DNA stress in Northern and Southern Europeans. *FASEB J*. 2007;21(1):45-52.
- 13. Poulsen, HE, Prieme H, Loft S. Role of oxidative DNA damage in cancer initiation and promotion. *Eur J Cancer Prev*. 1998;7(1):9-16.
- 14. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. *FASEB J.* 2003;17(10):1195-1214.

Questions?

